Large-scale eye-tracking while reading benchmark shows surprisal captures early
fixations, but not regressions
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Surprisal-based accounts of syntactic disambiguation difficulty hypothesize that incremental
processing difficulty in garden path (GP) sentences can be explained by word-level predictability
[1]. Contrary to this hypothesis, recent large-scale self-paced reading (SPR) studies found that
surprisal from neural language models drastically underpredicts the magnitude of reading time
(RT) slowdowns in GP constructions [2,3]. One reason for this failure could be that reading
measures in SPR conflate distinct sources of difficulty such as word recognition and syntactic
integration into a single RT measure per word. In eye-tracking, on the other hand, different
sources of difficulty tend to be associated with distinct measures [4]; for example, word
recognition is associated with first pass (a.k.a. gaze duration; the total fixation time on a word
before exiting to the left or right) whereas syntactic integration is associated with first pass
regression out probability (RO; whether the reader regresses to a previous word after the first
pass). We conduct a large-scale (N=368) eye-tracking experiment, using the same stimuli and
design as [2], to investigate the extent to which surprisal can explain gaze duration and RO in
GP constructions.

Methods: Each participant saw 4 sentences of 13 experimental constructions intermixed with
40 filler sentences. Here we focus on only 6 constructions (3 GPs x 2 ambiguity, see (1)).
Participants answered a comprehension question following each sentence. Participants with an
accuracy below 80% on filler questions or with more than 25% track loss/blinking during
first-pass of the target word were excluded (13%). Trials with gaze duration on the target word
longer than 2 seconds were removed (< 0.1%).

We estimate empirical GPEs by fitting Bayesian mixed-effects regression models to the
two reading measures (see model formula in (3)). To generate predicted GPEs from surprisal
estimates, we follow the method of [2, 3]: First, we obtained surprisal estimates from two neural
language models: GPT-2 and an LSTM [4]. Second, we estimated coefficients predicting gaze
duration and RO from surprisal using the filler sentences (while controlling for word length,
position, frequency and spillover). Then, we use the conversion factors to generate predicted
gaze durations and RO probabilities on the target GP sentences. Finally, we fit Bayesian models
(same structure as (3)) to the predicted data to estimate predicted GPEs. We look at two
positions: the disambiguating word and the spillover word.

Gaze Duration: The GPE in gaze duration was localized to the disambiguating verb. As in the
SPR study, the no-surprisal baseline models did not capture the magnitude of any GPEs. Unlike
SPR, surprisal from GPT-2 captures GPE magnitude in two out of three constructions. Surprisal
from the LSTM captures one of three. Even though surprisal under-predicted GPEs in the
MV/RR construction by a factor of ~4.5, this under-prediction is far less severe than previously
observed in SPR (28x). Our results are consistent with the claim that surprisal largely captures
the magnitude of GPEs for gaze duration.

Regressions Out: We find GPEs at both the disambiguating verb and spillover word in RO, as
well as significant differences in regression probabilities by construction in the spillover region.
Surprisal from GPT-2 and the LSTM does not account for the magnitude of the GPE in either
region.

Summary: We find evidence that surprisal can better explain GPEs in gaze duration than in RO.
This discrepancy suggests distinct processes involved in syntactic disambiguation [4], with
surprisal affecting only some of them. We argue that high regression rates in GPs most likely
reflects structural reanalysis [4, 6]. This hypothesis can be further evaluated by comparing
predictions from models that implement reanalysis against both ROs and regression-path
durations across the three GP constructions [e.g. 7, 8].
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1a. The little girl (who was) fed the lamb remained relatively calm despite having asked for beef. (MV/RR)
1b. The little girl found (that) the lamb remained relatively calm despite the absence of its mother. (NP/S)
1c. When the little girl attacked(,) the lamb remained relatively calm despite the sudden assault. (NP/Z)

Tab 1: An example of a GP triplet. (1a) has a locally ambiguous verb phrase that can be either a main verb (MV) or
a reduced relative clause (RR). (1b) has a locally ambiguous noun phrase that can be either the direct object of the
verb or the subject of a sentential complement (S). (1¢) has a locally ambiguous noun phrase that can be either the
direct object or the subject of an upcoming independent clause. Critical position and the spillover positions in bold.
Parentheses denote the unambiguous forms. Example stimuli and their descriptions are adapted from [3].

(2a) Surprisal filler models:
Reading_measure ~ Surp(w,) + Surp(w;.,) + Pos(w,) + Freq(w))*Len(w;) + Freq(w,.,)*Len(w;.,) + (1 + Surp(w))+
Surp(wi.,)|| subj) + (1| item)

(2b) Baseline filler models:
Reading_measure ~ Pos(w;) + Freq(w;)*Len(w,) + Freq(w..,)*Len(w,.,) + (1 + Freq(w))+ Freq(w;.,)|| subj) + (1| item)

(3) GP models (Bayesian):

reading measure ~ Ambiguity*(NP/Svs.MV/RR + NP/Vvs.MV/RR) + (1+ Ambiguity * (NP/Svs.MV/RR +
NP/Vvs.MV/RR)|subj) + (1 + Ambiguity * (NP/Svs.MV/RR + NP/Vvs.MV/RR)|item)

Tab 2: Details about statistical model. Surp(w) = surprisal of word w, Pos(w) = position, Len(w) = length, Freq(w) =
log unigram frequency. For the filler models, we use logistic regression to predict RO, a binary variable, and linear
regression to predict gaze duration.

type No surprisal baseline = Wiki-LSTM -+ GPT-2 - Empirical
type No surprisal baseline -+ Wiki-LSTM -+ GPT-2 - Empirical
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Figure 1: Empirical and predicted GPEs in each construction. Gaze duration at the disambiguating verb is given in
(1a) and the spillover region in (1b). RO proportions are given at the disambiguating verb at (1c) and the spillover
region in (1d). Error bars represent posterior 95% quantile ranges.




